Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2037304

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
2.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Article in English | EuropePMC | ID: covidwho-1918542

ABSTRACT

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1678767

ABSTRACT

CD39/NTPDase1 has emerged as an important molecule that contributes to maintain inflammatory and coagulatory homeostasis. Various studies have hypothesized the possible role of CD39 in COVID-19 pathophysiology since no confirmatory data shed light in this regard. Therefore, we aimed to quantify CD39 expression on COVID-19 patients exploring its association with severity clinical parameters and ICU admission, while unraveling the role of purinergic signaling on thromboinflammation in COVID-19 patients. We selected a prospective cohort of patients hospitalized due to severe COVID-19 pneumonia (n=75), a historical cohort of Influenza A pneumonia patients (n=18) and sex/age-matched healthy controls (n=30). CD39 was overexpressed in COVID-19 patients’ plasma and immune cell subsets and related to hypoxemia. Plasma soluble form of CD39 (sCD39) was related to length of hospital stay and independently associated with intensive care unit admission (adjusted odds ratio 1.04, 95%CI 1.0-1.08, p=0.038), with a net reclassification index of 0.229 (0.118-0.287;p=0.036). COVID-19 patients showed extracellular accumulation of adenosine nucleotides (ATP and ADP), resulting in systemic inflammation and pro-coagulant state, as a consequence of purinergic pathway dysregulation. Interestingly, we found that COVID-19 plasma caused platelet activation, which was successfully blocked by the P2Y12 receptor inhibitor, ticagrelor. Therefore, sCD39 is suggested as a promising biomarker for COVID-19 severity. As a conclusion, our study indicates that CD39 overexpression in COVID-19 patients could be indicating purinergic signaling dysregulation, which might be at the basis of COVID-19 thromboinflammation disorder.

5.
Nat Immunol ; 23(2): 159-164, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475313

ABSTRACT

SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/virology , Genetic Heterogeneity , Host-Pathogen Interactions , Humans , Phenotype , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL